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Dynamo bifurcations in an array of driven convectionlike rolls

S. Rudiger, F. Feudel, and N. Seehafer
Institut fir Physik, Universita Potsdam, PF 601553, D-14415 Potsdam, Germany
(Received 26 September 1997; revised manuscript received 8 Decembgr 1997

The bifurcations in a three-dimensional incompressible, electrically conducting fluid with an external forcing
of the Roberts type have been studied numerically. The corresponding flow can serve as a model for the
convection in the outer core of the Earth and is realized in an ongoing laboratory experiment aimed at
demonstrating a dynamo effect. The symmetry group of the problem has been determined and special attention
has been paid to symmetry breaking by the bifurcations. The nonmagnetic, steady Roberts flow loses stability
to a steady magnetic state, which in turn is subject to secondary bifurcations. The secondary solution branches
have been traced until they end up in chaotic std®%063-651X98)08105-7

PACS numbe(s): 47.20.Ky, 47.65+a, 47.27.Cn, 95.30.Qd

[. INTRODUCTION has recently received renewed interest. On the one hand, it
resembles the roll solutions of therm@r soluta) convec-

The generation and maintenance of magnetic fields by thion. In the convective zones of rotating celestial bodies, for
motion of electrically conducting fluids such as those in theinstance, convection rolls parallel to the axis of rotation tend
fluid outer core of the Earth and in the convection zone ofto be formed[11]. On the other hand, the Roberts flow is
the Sun are the subject of dynamo theory. Realistic model@pproximately realized in an ongoing experiment aimed at
describing the dynamo processes are given in the form of gemonstrating the dynamo effect under terrestrial conditions
complex system of nonlinear partial differential equations[12]. The experimental setup has been motivated by the ki-
including the Navier-Stokes equatiofi§SE), the induction nematic dynamo effectiveness of the Roberts fi@nd its
equation, the heat equation, and the thermodynamic equatigi¥pPposed resemblance to planetary convegtidnconduct-
of state. Heating causes fluid motions, which in turn, notablying fluid (sodium is pumped through an array of straight
in the presence of rotation, induce magnetic fields. An acparallel ducts that are connected at their ends, where the flow
count of the relevant equations is found, e.g., in REF. out of a duct reverses its direction before entering a neigh-

Because of the complexity of realistic models and due td0ring duct. The ducts contain internal guiding structures
restricted computer capacities, which allow only short-timesuch that the flow becomes helical. All guiding structures,
simulations, the dynamo processes are not completely undeiicluding the(thin) walls separating neighboring ducts, are
stood yet. Looking for tractable models, it is generally ac-electrically conducting.

Cepted that the incompressib|e magnetohydrodynamic Kinematic studies related to this experiment are due to
(MHD) equations, consisting of the incompressible NSE and?\pe! et al. [13] and Tilgner[14]. Apel et al. applied mean-

the induction equation, contain the basic elements of a dyfield dynamo theory15], whose central mechanism is the
namo[2]. Furthermore, traditional dynamo theory has beergffect, while Tilgner used direct numerical simulation of the
mainly kinematic, prescribing the velocity field and solving induction equation. In both studies the prescribed flow was
the (then lineay induction equation for the magnetic field, the Roberts flow and system parameters most suitable for
with positive growth rates indicating a dynamo effect. Thedynamo excitation were determined. However, because of
Arnold-Beltrami-ChildresYABC) flow vagc [3-5] and the the kinematic nature of the models used, the feedback of the
Roberts flowvg [6] are intensively studied examples for magnetic field to the velocity field remained an open prob-
dynamo-effective velocity fields. To take into account thelem. This gave us the motivation to study bifurcations of the
back reaction of the magnetic field on the velocity field, theMHD equations for situations where an external forcing of
kinematic analysis has to be extended to a study of the fulthe Roberts type is applied.

nonlinear MHD equations. The necessary energy input into  The Roberts flow is given as a family of three-
the System may be modeled by an externa|-f0rcing term irdimenSional VelOCiw fields that are independent of one of the
the NSE that just produces an appropriate velocity field, suckPatial coordinates, namely,

asvapc Or vy, as a solution of the NSE. For small Reynolds . . . .
numbers, i.e., if the forcing is weak, this velocity field with a vr=(g sinx cosy,—g cosx siny,2f sinx siny),
vanishing magnetic field is also the only stakbigme- (1)
asymptotig solution of_the full MHD equations with the in- whereg and f are real parameters. This flow is an exact
troduced external forcing. The dynamo problem can then bgytion of the incompressible Euler equations. It is also a

reformulated as follows: Does there exist for higher Rey-go|ytion of the incompressible NSE if the external force field
nolds numbers a phase transition to solutions with nondecay-

ing magnetic fields? For the case of the ABC forcing this f=2vg=—V?vg 2
question could be answered affirmativéR~10].

In this paper we address the dynamo problem for situais applied, just compensating the viscous losses. Further-
tions with a forcing of the Roberts type. The Roberts flowmore, together with a vanishing magnetic field, the Roberts
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flow yields a solution of the the full MHD equatiof&qgs. o T~
(3)—(5) below], which is stable for small Reynolds numbers. \/‘ N Ci’, P '\,
In this paper we investigate numerically the bifurcation e AT
scenario of the MHD equations with Roberts forcing, the ». |.= 2 ' X5,
strength of the forcing or the Reynolds number being our N T
bifurcation parameter. We look for magnetic instabilities, l\‘ R E R )
which indicate a dynamo effect, and characterize the bifur- ol > ~ N
cating solution branches. o o
Special attention is paid to symmetry-breaking effects. * X

The fir_st symme_:try-bre_aking bifurcation i_s StUdi_Ed by means FIG. 1. Projections of the velocity vectors of the Roberts flow
of equivariant singularity theor16]. The irreducible repre- on thex-y plane(left) and contour lines of the kinetic helicity in the

sentations of the equivariance group determine the possibley pianeright). The flow goes up in the lower left and the upper
symmetries of bifurcating solutions. So the subsymmetry otight quadrant. Helicity is largest in the rolls.

a magnetic branch, bifurcating from the Roberts flow, is both
determined analytically and confirmed numerically.

In Sec. Il we introduce the governing equations, explain H=v-VXu, (6)
the numerical truncation used, and determine the symmetry
group of the equations. Then in Sec. Il the bifurcation se- L

: . . : s favorable for a dynamo effect. In Fig.(fight), therefore,

guence obtained for increasing the Reynolds number is priélso contour lines gf the Kkinetic helicitg/ (arg s)hown
sented. In Sec. IV we explore the spatial structure of th . ’
magnetic field generated in the primary_bifurcation and s_tud){helnMg:Beéall’J;?oﬁ)s(telr:"’(‘)IJSEZ;% Ed;%ezgh;eiﬁr?ggﬁt%v?
the symmetry of the total solutiofconsisting of magnetic q ‘ 9

L P L : identify a symmetry group that is isomorphic to the group
and velocity fields A brief discussion is given in Sec. V. ! . )
v lty fields et discussion’is given | D,xZ,XS. D, denotes the dihedral group. It consists of all

rotations and reflections of a square in a plane that leave the
square invariantZ, is the reflection group and corresponds
We start from the equations for an incompressible electrit0 the translation X,y,z)— (x+m,y+m,z), that is, to the
cally conducting fluid, the MHD equations, translation of one roll to that one with the same direction of
the fluid motion.St, finally, denotes the circle group corre-
Jv 5 1, sponding to the translation invariance of the Roberts pattern
2 T(@-V)o=Vu-Vp-SVB™+(B-V)B+f, (3)  along thez axis. Of course the primary solution, the Roberts
flow, shares these symmetries.
JB For the numerical calculations we have used Fourier de-
—+(v-V)B=P;,lVZB+(B-V)v, (4) compositions ofv, B, p, and f to approximate the MHD
Jt equations by a high-dimensional system of ordinary differ-
ential equationdODES, which then has been treated by
means of a pseudospectral method. The mean values of
and B over the cube, which can be shown to be time inde-
pendent, have been assumed to vanish. Time integration was
performed using an eighth-order Runge-Kutta scheme with
adaptive time stepping and the pseudospectral code was used

incompressibility condition. We use the MHD equations in aWith a spatial resolution of 6collocation points, corre-
) ! ' . . ndin m of 49 152 ODEs; mploying ©&4.
nondimensional form here; the rescaling transformation maspo ding to a system of 49 152 ODEs; by employing

; ; 4 ¥his number of equations is reduced by one-third. The final
be found in Ref.[9]. Pm IS the m_agn_etlc Prandtl _number system of ODEs has been studied by means of simulations
(P,=v/n, wherev is the kinematic viscosity ang is the and bifurcation-analysis techniques
magnetic diffusivity. '

Corresponding to the spatial periodicity of the Roberts
field given by Eqgs(1) and(2), we apply periodic boundary
conditions to the MHD equations and consider their solu-

Il. BASIC EQUATIONS AND SYMMETRY

V.v=0, V.B=0, (5)

wherev denotes the fluid velocity the magnetic induction,
andp the pressure. EquatidB) is the NSE, with the Lorentz
force and the external fordeon the right-hand side, E¢4)
the induction equation, and the first relation in E§) the

lll. BIFURCATIONS AND ATTRACTORS

tions in a cube of side length72 The magnetic Prandtl For smallR the Roberts flow with a vanishing magnetic
number is fixed to a value of B,,=1, and the two param- field is the only stable solution of the MHD equations. Trac-
eters of the velocity field are set equal to each otfierg. ing this solution branch to higher Reynolds numbers, we

Following previous studies of the ABC forced MHD equa- have calculated the eigenvalues of the Jacobian to look for
tions[7-10], the parametef =g is referred to as the Rey- bifurcations. AtR~7.3 two real eigenvalues, which belong
nolds numbenR. to magnetic modes, become equal to zero. This dynamo in-
To give an impression of the Roberts flow, the only time-stability yields a symmetry-breaking pitchfork bifurcation
asymptotic state for smalR, projections of the velocity vec- generating new steady states with a nonvanishing magnetic
tors on thex-y plane are shown in Fig. deft). The velocity field. The original symmetry is broken, namely, the solutions
field splits up into separate cells where the streamlines spiralre no longeiSt invariant; now both the magnetic field and
up or down. It is a prevalent conjecture that the presence dhe velocity field depend on the coordinate. This reduces
kinetic helicity, defined by the symmetry of the solutions to the subgroup symmetry
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FIG. 2. Magnetic energy versus Reynolds number. Steady-state FIG. 3. Kinetic energy versus Reynolds number. The solid line
(x), periodic (¢), torus (A), and chaotic (*) solutions are refers to the MHD case and the dotted line to the purely hydrody-

marked. The inner small box shows the zoomed region Ror Namical case. Steady-statg |, periodic (¢ ), torus (A), and cha-
=14.4-15.0. otic (*) solutions are marked.

D4XZ,. A more detailed discussion of this symmetry- tion that the instability point is.shift.ed a bit toward§ smaller
breaking bifurcation by means of representation theory ig¥€ynolds numbersR~12). This shift can be explained by
given in Sec. IV. The generated magnetic field acts on théhe additional dissipation in the presence of a magnetic field
fluid motion. However, though now nearly all Fourier modes (S0 that the forcing must be stronger for the instability to
of the velocity fields are excited, the original modes of the@PPear. Thus we are led to conclude that the decrease of the
Roberts flow still dominate the structure of the velocity field. Magnetic energy seen in Fig. 2 is primarily caused by a

Time averages of the magnetic energy versus the ReyRurely hydrodynamic instability. Seemingly the instability
nolds are shown in Fig. 2, where also the different attractoféduces the dynamo effectiveness of the velocity field and
types are indicated. The onset of a dynamoRat7.3 is the. asspmated reduction (_)f the energy transfer from .the ve-
clearly seen. For increasing Reynolds numbers the magnetlecity field to the magnetic field compensates the kinetic-
energy grows strongly along the stationary magnetic branctEnergy drop seen in the purely hydrodynamic situation.
which ends up in a secondary bifurcationRst 12.5 gener- The time evolution of a trajectory fdR=14.7, projected
ating time periodic solutions. The resulting structures of the®Nto & plane in phase space, is drawn in Fig. 4. As it can be
velocity field are wavy rolls: The fluid still moves in four S€en from the inset of Fig. 2, this quasiperiodic branch is
seperate rolls, as depicted in Fig. 1, but these are now weakffaPle only within a small interval of the Reynolds number
bent and oscillate slightly. and loses stability betwedR=14.8 andR=15.0. For larger

In Fig. 2 the sudden drop of the magnetic energyRat values of the Reynolds number ch'aos is observed. In Fig. 5
~14.65 is conspicuous. It is accompanied by a transitiofVe Present an example of a chaotic trajectoryRer 17.0.
from the periodic branch to quasiperiodic solutioftsrus To prove the chaotic nature we have calculated Lyapunov
branch. We resolved the transition region with high accu- €XxPonents, using an algorithm of Shimada and Nagashima

racy, as can be seen in the inset of Fig. 2, but we could not
clarify in detail the origin of the torus branch. There are at 030 ™ = 7 7 7
least two possibilities: Both branches are linked by a second: i
ary Hopf bifurcation or they are completely disconnected. 0.5
In order to understand the sudden drop of the magnetic
energy, we have also studied the dynamics in the purely= i
hydrodynamical cas@vith no magnetic fielgl In simulations - 0.20-
of the NSE we observed a drop of the kinetic energy. Figure -
3 shows the kinetic energy for both the MHD and the purely =
hydrodynamic situations. The solid line refers to the MHD %
equations and the dotted line to the NSE. Surprisingly, the™ i
sudden drop of the magnetic energy has nearly no effector 4L
the velocity field. Only a small hump in the vicinity of the
instability is visible. We even cannot give a sound interpre- i
tation of this hump. It might be an artifact of the averaging 9% —————— —
procedure used to calculate the kinetic enefiggmely, the —0.10 e [2‘208 10 0.05 0.10
new, second frequency of the arising torus solution is ex- ' o
tremely small. The kinetic energy in the purely hydrody-  FIG. 4. Projection of the torus solution onto a plane spanned by
namic situation shows nearly the same profile as does thene of the velocity and one of the magnetic-field Fourier compo-
magnetic energy in the MHD casEig. 2), with the excep- nents forR=14.7.

0.15
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Re v [k=(1,1,0)] but rather sketch only its idea.

Fourier space can be decomposed into isotypic compo-

nts that correspond to the irreducible representations of the

symmetry group. Since two real eigenvalues become equal to

zero, a two-dimensional irreducible representation of the
riginal symmetry groupD,XZ,XS' has been studied.
onsidering the complex plane, the natural actiorDgfis

FIG. 5. Projection of the chaotic solution onto a plane spannech(:J
by one of the velocity and one of the magnetic-field Fourier com-
ponents forR=15.0.

[17]. To check the correctness of the algorithm, we applie
the program to the secondary steady statRaf7.3. As ex- . .
pectrt)ad gone Lyapunov expoxent Wgs found to be equal tgenerated by_ the rotatiop= exp_(m/2) and the reflegnonc

zero, corresponding to the marginally stable direction thal" th? real ax's-.L‘?‘ the trar?slatlcmz act gs_the |dent|ty_ and
results from the breaking of tH&' symmetry. This vanishing SeS" as a multiplication with expg). This is also the irre-

Lyapunov exponent remains also present for the followin ducible representation that we have found to be responsible

branches. Thus the periodic and the torus solutions possgg the two vanishing eigenvalues. . . .
It turns out that the corresponding eigenvectors lie in a

two or three vanishing exponents, respectively. For the cha- . .
otic solution atR=15.0 we found at least two positive subspace of Fourier space spanned by the Fourier modes

Lyapunov exponents. Figure 6, showing the cumulativ expixtiky+ikz), with k;= —1,1 andk, +ky even. It can

value of the five largest Lyapunov exponents as a function o € shc_)wn that this subspace (_jecompose$ into _finite-
mensional components that are invariant with respect to

the integration time, demonstrates the good convergence e action of the symmetry group. This results from the ac-

the algorithm. tion of the symmetry group elements on theectors of the

Fourier modes, which conjugate the elements of certain sub-
IV. STRUCTURE OF THE MAGNETIC FIELD sets of the k vectors. For instance, the vectors

In this section we characterize the real-space structure c( ,Oﬁo)ih(O,laO)t,hﬁl,Otzo), afntdh (0-1,0) ?re rrllappe? qnto |
the magnetic field on the stationary magnetic branch and foyach other by e action of the Symmetry elements in rea

the chaotic regime. In the symmetry-breaking bifurcation atPace. These finite-dimensional subspaces are reducible and

R~7.3, which produces the secondary steady-state solutiof@n be decomposed into their irreducible components. It can

with a nonvanishing magnetic field, two real eigenvalues 01be shown from the action of the symmetries in Fourier space

the Jacobian matrix become equal to zero. This Symmetr);_hat the representation described above occurs in the decom-

breaking bifurcation will be discussed in the frame of grouppos"['o.n of each of these §ubspgces, €., I eqch sqbspace
there is at least one two-dimensional subspace in which the

e S symmetry group acts as this representation.

‘ A Employing the equivariant branching theorgb], it can

be proved that for this representation at least one branch of
solutions with a “twisted” symmetry group isomorphic to
D,XZ, bifurcates. This symmetry group is generated by
{(y,—7y),(k,id) e D,x S} xZ,. The translational symme-
try St is broken. Due to th&! symmetry for everyse St

there exists a solution with symmetry grodp=s3s 1,
whereZ, is the described generated symmetry. Thus we ob-
tain a family of solutions that are translated in thdirection
with isomorphic symmetry groups.

In Fig. 7 we have plotted the absolute value of the mag-

Lyapunov exponents
© ©
o N}

|
o
R~

—0.4L ! s s ] netic field in the cross sectiorrs= 7/2 andz= 7 for R=8,
0 100 200 300 400 i.e., for a solution on the secondary steady-state branch. This
time solution is symmetric with respect to one of the isomorphic

FIG. 6. Five largest Lyapunov exponents versus integration tim@roupsis. Since in Fig. 7 only the contour lines of the
for R=17. magnetic field strength are drawn, some symmetry properties
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the chaotic state, also energy spectra have been calculated.
Compared to the periodic state depicted in Fig. 7, where only
one mode with a nonvanishing is excited, thek, spectra of

the chaotic solutions extend to smaller scales. Herekthe
spectra are calculated by averaging ovekalndk, . In the

|k| spectrum, however, we could not observe ffer the
Reynolds numbers considejedignificant differences be-
tween the chaotic and other time-dependent solution
branches.

V. SUMMARY
FIG. 8. Contour lines of the absolute value of the magnetic field ) ] ) ] ]
in the planesz= /2 (left) andz= (right) for R=17. We have studied the incompressible MHD equations with

a forcing of the Roberts type. Increasing the Reynolds num-
ber from small values, the primary solution, the nonmagnetic
of the three-dimensional vector field are not visible, but cer-R0Derts flow, becomes unstable in a pitchfork bifurcation,
tain symmetry properties are obvious; we only mention theY'e|d'”9 a new steady state with a nonvanishing magnetic
translational symmetry that corresponds toZaeomponent  11€ld, that is to say, a dynamo effect. In contrast to analogous
of the original group and the rotational symmetry around thdnvestigations of the MHD equations with ABC forcing,
y axis. where the primary dynamo b_|furcat|on is of the_ Hopf type
Three-dimensional plots show that there are cylinders ofmd a:(l rkrjllagnhetlc state'_s are tl(rjne deperr:c[éfr-gg], It fseen;sh
weak magnetic field in the interiors of the fluid rolls. By fémarkable that a stationary dynamo has been found here.

comparison with Fig. 1 one can see that they coincide withve have traced the magnetic solution branch towards higher

the regions of largest helicity. This phenomenon seems to b§€Ynolds number and have found a transition to chaotic so-

a result of flux expulsion from centers of helical motidos, IUtanS vie:)la sderie? of S;C%f?]f’ary bifurcations. dd
e.q., Ref[2)). “Lumps” of strong magnetic field are situ- notable detail in the bifurcation sequence is a sudden

ated between the weak-field regio(see Fig. ¥, the loca- drop of t-he.magnetic energy aCCOf.“Pa”V".‘Q f[he transition
tions of the field maxima coinciding approximately with the from periodic _to q_uaS|per|od|c mpU_on. It.|.s I|kely t9 be
stagnation pointsgor lines, respectivelyof the original Rob- caused by a prlmar!ly hydrodypamm instability. Wh|le in the
erts flow. The strong fields here are probably due to th?Urély hydrodynamic case a kinetic-energy drop is observed,
combined effects of flux expulsion from the rolls and field- (N€re is @ magnetic-energy drégd no kinetic-energy drop

line stretching near the stagnation points.

in the MHD case.
The symmetry of the secondary steady state implies that Special attention has been paid to the analysis of the first
the modes with wave numberk=(k,,0,0) and k

symmetry-breaking bifurcation and its influence on the struc-
—(0k,,0), k,,k,eN, have to be equal to zero. After the ture of the generated magnetic field. We have determined the
Ny 1 X1y 1 . - . . . .
Hopf bifurcation(leading to the time-periodic statall these ~ Magnetic modes becoming unstable in the primary pitchfork
modes are excited. Those with=1 ork,=1, in particular,

bifurcation and have classified the resulting subgroup that
represent large-scale shear components of the flow and of ﬂgéatermmes the symmetry of the new steady state with a non-
magnetic field.

vanishing magnetic field; it turned out that the original trans-
For the chaotic regime all symmetries seem to be broke

rJational symmetry is broken in a nontrivial manner.
To give an impression of the irregular structure of the mag-
netic field in this regime, contour lines of the absolute value
of the magnetic field in two cross sections through the cube, This work was supported by the Deutsche Forschungsge-
calculated forR=17, are shown in Fig. 8. meinschaft under its main topic “Ergodentheorie, Analysis
To get a measure of the degree of spatial irregularity inund Effiziente Simulation Dynamischer Systeme.”
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