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Dynamo bifurcations in an array of driven convectionlike rolls

S. Rüdiger, F. Feudel, and N. Seehafer
Institut für Physik, Universita¨t Potsdam, PF 601553, D-14415 Potsdam, Germany

~Received 26 September 1997; revised manuscript received 8 December 1997!

The bifurcations in a three-dimensional incompressible, electrically conducting fluid with an external forcing
of the Roberts type have been studied numerically. The corresponding flow can serve as a model for the
convection in the outer core of the Earth and is realized in an ongoing laboratory experiment aimed at
demonstrating a dynamo effect. The symmetry group of the problem has been determined and special attention
has been paid to symmetry breaking by the bifurcations. The nonmagnetic, steady Roberts flow loses stability
to a steady magnetic state, which in turn is subject to secondary bifurcations. The secondary solution branches
have been traced until they end up in chaotic states.@S1063-651X~98!08105-7#

PACS number~s!: 47.20.Ky, 47.65.1a, 47.27.Cn, 95.30.Qd
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I. INTRODUCTION

The generation and maintenance of magnetic fields by
motion of electrically conducting fluids such as those in
fluid outer core of the Earth and in the convection zone
the Sun are the subject of dynamo theory. Realistic mod
describing the dynamo processes are given in the form
complex system of nonlinear partial differential equatio
including the Navier-Stokes equations~NSE!, the induction
equation, the heat equation, and the thermodynamic equa
of state. Heating causes fluid motions, which in turn, nota
in the presence of rotation, induce magnetic fields. An
count of the relevant equations is found, e.g., in Ref.@1#.

Because of the complexity of realistic models and due
restricted computer capacities, which allow only short-tim
simulations, the dynamo processes are not completely un
stood yet. Looking for tractable models, it is generally a
cepted that the incompressible magnetohydrodyna
~MHD! equations, consisting of the incompressible NSE a
the induction equation, contain the basic elements of a
namo@2#. Furthermore, traditional dynamo theory has be
mainly kinematic, prescribing the velocity field and solvin
the ~then linear! induction equation for the magnetic field
with positive growth rates indicating a dynamo effect. T
Arnold-Beltrami-Childress~ABC! flow vABC @3–5# and the
Roberts flowvR @6# are intensively studied examples fo
dynamo-effective velocity fields. To take into account t
back reaction of the magnetic field on the velocity field, t
kinematic analysis has to be extended to a study of the
nonlinear MHD equations. The necessary energy input
the system may be modeled by an external-forcing term
the NSE that just produces an appropriate velocity field, s
asvABC or vR , as a solution of the NSE. For small Reynol
numbers, i.e., if the forcing is weak, this velocity field with
vanishing magnetic field is also the only stable~time-
asymptotic! solution of the full MHD equations with the in
troduced external forcing. The dynamo problem can then
reformulated as follows: Does there exist for higher Re
nolds numbers a phase transition to solutions with nonde
ing magnetic fields? For the case of the ABC forcing t
question could be answered affirmatively@7–10#.

In this paper we address the dynamo problem for sit
tions with a forcing of the Roberts type. The Roberts flo
571063-651X/98/57~5!/5533~6!/$15.00
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has recently received renewed interest. On the one han
resembles the roll solutions of thermal~or solutal! convec-
tion. In the convective zones of rotating celestial bodies,
instance, convection rolls parallel to the axis of rotation te
to be formed@11#. On the other hand, the Roberts flow
approximately realized in an ongoing experiment aimed
demonstrating the dynamo effect under terrestrial conditi
@12#. The experimental setup has been motivated by the
nematic dynamo effectiveness of the Roberts flow~and its
supposed resemblance to planetary convection!. A conduct-
ing fluid ~sodium! is pumped through an array of straig
parallel ducts that are connected at their ends, where the
out of a duct reverses its direction before entering a nei
boring duct. The ducts contain internal guiding structu
such that the flow becomes helical. All guiding structur
including the~thin! walls separating neighboring ducts, a
electrically conducting.

Kinematic studies related to this experiment are due
Apel et al. @13# and Tilgner@14#. Apel et al. applied mean-
field dynamo theory@15#, whose central mechanism is thea
effect, while Tilgner used direct numerical simulation of th
induction equation. In both studies the prescribed flow w
the Roberts flow and system parameters most suitable
dynamo excitation were determined. However, because
the kinematic nature of the models used, the feedback of
magnetic field to the velocity field remained an open pro
lem. This gave us the motivation to study bifurcations of t
MHD equations for situations where an external forcing
the Roberts type is applied.

The Roberts flow is given as a family of three
dimensional velocity fields that are independent of one of
spatial coordinates, namely,

vR5~g sin x cosy,2g cosx sin y,2f sin x sin y!,
~1!

where g and f are real parameters. This flow is an exa
solution of the incompressible Euler equations. It is also
solution of the incompressible NSE if the external force fie

f52vR52¹2vR ~2!

is applied, just compensating the viscous losses. Furt
more, together with a vanishing magnetic field, the Robe
5533 © 1998 The American Physical Society
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flow yields a solution of the the full MHD equations@Eqs.
~3!–~5! below#, which is stable for small Reynolds number

In this paper we investigate numerically the bifurcati
scenario of the MHD equations with Roberts forcing, t
strength of the forcing or the Reynolds number being
bifurcation parameter. We look for magnetic instabilitie
which indicate a dynamo effect, and characterize the bi
cating solution branches.

Special attention is paid to symmetry-breaking effec
The first symmetry-breaking bifurcation is studied by mea
of equivariant singularity theory@16#. The irreducible repre-
sentations of the equivariance group determine the poss
symmetries of bifurcating solutions. So the subsymmetry
a magnetic branch, bifurcating from the Roberts flow, is b
determined analytically and confirmed numerically.

In Sec. II we introduce the governing equations, expl
the numerical truncation used, and determine the symm
group of the equations. Then in Sec. III the bifurcation
quence obtained for increasing the Reynolds number is
sented. In Sec. IV we explore the spatial structure of
magnetic field generated in the primary bifurcation and stu
the symmetry of the total solution~consisting of magnetic
and velocity fields!. A brief discussion is given in Sec. V.

II. BASIC EQUATIONS AND SYMMETRY

We start from the equations for an incompressible elec
cally conducting fluid, the MHD equations,

]v
]t

1~v•“ !v5¹2v2“p2
1

2
“B21~B•“ !B1f, ~3!

]B

]t
1~v•“ !B5Pm

21¹2B1~B•“ !v, ~4!

“•v50, “•B50, ~5!

wherev denotes the fluid velocity,B the magnetic induction
andp the pressure. Equation~3! is the NSE, with the Lorentz
force and the external forcef on the right-hand side, Eq.~4!
the induction equation, and the first relation in Eq.~5! the
incompressibility condition. We use the MHD equations in
nondimensional form here; the rescaling transformation m
be found in Ref.@9#. Pm is the magnetic Prandtl numbe
(Pm5n/h, wheren is the kinematic viscosity andh is the
magnetic diffusivity!.

Corresponding to the spatial periodicity of the Robe
field given by Eqs.~1! and ~2!, we apply periodic boundary
conditions to the MHD equations and consider their so
tions in a cube of side length 2p. The magnetic Prandt
number is fixed to a value of 1,Pm51, and the two param
eters of the velocity field are set equal to each other,f [g.
Following previous studies of the ABC forced MHD equ
tions @7–10#, the parameterf 5g is referred to as the Rey
nolds numberR.

To give an impression of the Roberts flow, the only tim
asymptotic state for smallR, projections of the velocity vec
tors on thex-y plane are shown in Fig. 1~left!. The velocity
field splits up into separate cells where the streamlines sp
up or down. It is a prevalent conjecture that the presenc
kinetic helicity, defined by
r
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Hk5v•“3v, ~6!

is favorable for a dynamo effect. In Fig. 1~right!, therefore,
also contour lines of the kinetic helicity are shown.

In general, an external forcing reduces the symmmetry
the MHD equations. In our case of the Roberts forcing
identify a symmetry group that is isomorphic to the gro
D43Z23S1. D4 denotes the dihedral group. It consists of
rotations and reflections of a square in a plane that leave
square invariant.Z2 is the reflection group and correspon
to the translation (x,y,z)→(x1p,y1p,z), that is, to the
translation of one roll to that one with the same direction
the fluid motion.S1, finally, denotes the circle group corre
sponding to the translation invariance of the Roberts pat
along thez axis. Of course the primary solution, the Robe
flow, shares these symmetries.

For the numerical calculations we have used Fourier
compositions ofv, B, p, and f to approximate the MHD
equations by a high-dimensional system of ordinary diff
ential equations~ODEs!, which then has been treated b
means of a pseudospectral method. The mean valuesv
and B over the cube, which can be shown to be time ind
pendent, have been assumed to vanish. Time integration
performed using an eighth-order Runge-Kutta scheme w
adaptive time stepping and the pseudospectral code was
with a spatial resolution of 163 collocation points, corre-
sponding to a system of 49 152 ODEs; by employing Eq.~5!
this number of equations is reduced by one-third. The fi
system of ODEs has been studied by means of simulat
and bifurcation-analysis techniques.

III. BIFURCATIONS AND ATTRACTORS

For smallR the Roberts flow with a vanishing magnet
field is the only stable solution of the MHD equations. Tra
ing this solution branch to higher Reynolds numbers,
have calculated the eigenvalues of the Jacobian to look
bifurcations. AtR'7.3 two real eigenvalues, which belon
to magnetic modes, become equal to zero. This dynamo
stability yields a symmetry-breaking pitchfork bifurcatio
generating new steady states with a nonvanishing magn
field. The original symmetry is broken, namely, the solutio
are no longerS1 invariant; now both the magnetic field an
the velocity field depend on thez coordinate. This reduce
the symmetry of the solutions to the subgroup symme

FIG. 1. Projections of the velocity vectors of the Roberts flo
on thex-y plane~left! and contour lines of the kinetic helicity in th
x-y plane~right!. The flow goes up in the lower left and the upp
right quadrant. Helicity is largest in the rolls.
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D43Z2. A more detailed discussion of this symmetr
breaking bifurcation by means of representation theory
given in Sec. IV. The generated magnetic field acts on
fluid motion. However, though now nearly all Fourier mod
of the velocity fields are excited, the original modes of t
Roberts flow still dominate the structure of the velocity fie

Time averages of the magnetic energy versus the R
nolds are shown in Fig. 2, where also the different attrac
types are indicated. The onset of a dynamo atR'7.3 is
clearly seen. For increasing Reynolds numbers the magn
energy grows strongly along the stationary magnetic bran
which ends up in a secondary bifurcation atR'12.5 gener-
ating time periodic solutions. The resulting structures of
velocity field are wavy rolls: The fluid still moves in fou
seperate rolls, as depicted in Fig. 1, but these are now we
bent and oscillate slightly.

In Fig. 2 the sudden drop of the magnetic energy aR
'14.65 is conspicuous. It is accompanied by a transit
from the periodic branch to quasiperiodic solutions~torus
branch!. We resolved the transition region with high acc
racy, as can be seen in the inset of Fig. 2, but we could
clarify in detail the origin of the torus branch. There are
least two possibilities: Both branches are linked by a seco
ary Hopf bifurcation or they are completely disconnected

In order to understand the sudden drop of the magn
energy, we have also studied the dynamics in the pu
hydrodynamical case~with no magnetic field!. In simulations
of the NSE we observed a drop of the kinetic energy. Fig
3 shows the kinetic energy for both the MHD and the pur
hydrodynamic situations. The solid line refers to the MH
equations and the dotted line to the NSE. Surprisingly,
sudden drop of the magnetic energy has nearly no effec
the velocity field. Only a small hump in the vicinity of th
instability is visible. We even cannot give a sound interp
tation of this hump. It might be an artifact of the averagi
procedure used to calculate the kinetic energy~namely, the
new, second frequency of the arising torus solution is
tremely small!. The kinetic energy in the purely hydrody
namic situation shows nearly the same profile as does
magnetic energy in the MHD case~Fig. 2!, with the excep-

FIG. 2. Magnetic energy versus Reynolds number. Steady-s
(3), periodic (L), torus (n), and chaotic (*) solutions are
marked. The inner small box shows the zoomed region forR
514.4–15.0.
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tion that the instability point is shifted a bit towards small
Reynolds numbers (R'12). This shift can be explained b
the additional dissipation in the presence of a magnetic fi
~so that the forcing must be stronger for the instability
appear!. Thus we are led to conclude that the decrease of
magnetic energy seen in Fig. 2 is primarily caused by
purely hydrodynamic instability. Seemingly the instabili
reduces the dynamo effectiveness of the velocity field a
the associated reduction of the energy transfer from the
locity field to the magnetic field compensates the kinet
energy drop seen in the purely hydrodynamic situation.

The time evolution of a trajectory forR514.7, projected
onto a plane in phase space, is drawn in Fig. 4. As it can
seen from the inset of Fig. 2, this quasiperiodic branch
stable only within a small interval of the Reynolds numb
and loses stability betweenR514.8 andR515.0. For larger
values of the Reynolds number chaos is observed. In Fi
we present an example of a chaotic trajectory forR517.0.

To prove the chaotic nature we have calculated Lyapu
exponents, using an algorithm of Shimada and Nagash

te FIG. 3. Kinetic energy versus Reynolds number. The solid l
refers to the MHD case and the dotted line to the purely hydro
namical case. Steady-state (3), periodic (L), torus (n), and cha-
otic (*) solutions are marked.

FIG. 4. Projection of the torus solution onto a plane spanned
one of the velocity and one of the magnetic-field Fourier com
nents forR514.7.
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@17#. To check the correctness of the algorithm, we appl
the program to the secondary steady state atR57.3. As ex-
pected, one Lyapunov exponent was found to be equa
zero, corresponding to the marginally stable direction t
results from the breaking of theS1 symmetry. This vanishing
Lyapunov exponent remains also present for the follow
branches. Thus the periodic and the torus solutions pos
two or three vanishing exponents, respectively. For the c
otic solution at R515.0 we found at least two positiv
Lyapunov exponents. Figure 6, showing the cumulat
value of the five largest Lyapunov exponents as a function
the integration time, demonstrates the good convergenc
the algorithm.

IV. STRUCTURE OF THE MAGNETIC FIELD

In this section we characterize the real-space structur
the magnetic field on the stationary magnetic branch and
the chaotic regime. In the symmetry-breaking bifurcation
R'7.3, which produces the secondary steady-state solu
with a nonvanishing magnetic field, two real eigenvalues
the Jacobian matrix become equal to zero. This symme
breaking bifurcation will be discussed in the frame of gro

FIG. 5. Projection of the chaotic solution onto a plane span
by one of the velocity and one of the magnetic-field Fourier co
ponents forR515.0.

FIG. 6. Five largest Lyapunov exponents versus integration t
for R517.
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representation theory. We will not present a complete pr
but rather sketch only its idea.

Fourier space can be decomposed into isotypic com
nents that correspond to the irreducible representations o
symmetry group. Since two real eigenvalues become equ
zero, a two-dimensional irreducible representation of
original symmetry groupD43Z23S1 has been studied
Considering the complex plane, the natural action ofD4 is
generated by the rotationg5exp(ıp/2) and the reflectionk
in the real axis. Let the translationZ2 act as the identity and
sPS1 as a multiplication with exp(ıs). This is also the irre-
ducible representation that we have found to be respons
for the two vanishing eigenvalues.

It turns out that the corresponding eigenvectors lie in
subspace of Fourier space spanned by the Fourier m
exp(ıkxx1ıkyy1ıkzz), with kz521,1 andkx1ky even. It can
be shown that this subspace decomposes into fin
dimensional components that are invariant with respec
the action of the symmetry group. This results from the
tion of the symmetry group elements on thek vectors of the
Fourier modes, which conjugate the elements of certain s
sets of the k vectors. For instance, the vecto
(1,0,0), (0,1,0), (21,0,0), and (0,21,0) are mapped onto
each other by the action of the symmetry elements in r
space. These finite-dimensional subspaces are reducible
can be decomposed into their irreducible components. It
be shown from the action of the symmetries in Fourier sp
that the representation described above occurs in the dec
position of each of these subspaces, i.e., in each subs
there is at least one two-dimensional subspace in which
symmetry group acts as this representation.

Employing the equivariant branching theorem@16#, it can
be proved that for this representation at least one branc
solutions with a ‘‘twisted’’ symmetry group isomorphic t
D43Z2 bifurcates. This symmetry groupS is generated by
$(g,2g),(k,id)PD43S1%3Z2. The translational symme
try S1 is broken. Due to theS1 symmetry for everysPS1

there exists a solution with symmetry groupŜs5sSs21,
whereS is the described generated symmetry. Thus we
tain a family of solutions that are translated in thez direction
with isomorphic symmetry groups.

In Fig. 7 we have plotted the absolute value of the ma
netic field in the cross sectionsz5p/2 andz5p for R58,
i.e., for a solution on the secondary steady-state branch.
solution is symmetric with respect to one of the isomorp

groups Ŝs. Since in Fig. 7 only the contour lines of th
magnetic field strength are drawn, some symmetry proper

d
-

e

FIG. 7. Contour lines of the absolute value of the magnetic fi
in the planesz5p/2 ~left! andz5p ~right! for R58.
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57 5537DYNAMO BIFURCATIONS IN AN ARRAY OF DRIVEN . . .
of the three-dimensional vector field are not visible, but c
tain symmetry properties are obvious; we only mention
translational symmetry that corresponds to theZ2 component
of the original group and the rotational symmetry around
y axis.

Three-dimensional plots show that there are cylinders
weak magnetic field in the interiors of the fluid rolls. B
comparison with Fig. 1 one can see that they coincide w
the regions of largest helicity. This phenomenon seems to
a result of flux expulsion from centers of helical motions~cf.,
e.g., Ref.@2#!. ‘‘Lumps’’ of strong magnetic field are situ
ated between the weak-field regions~see Fig. 7!, the loca-
tions of the field maxima coinciding approximately with th
stagnation points~or lines, respectively! of the original Rob-
erts flow. The strong fields here are probably due to
combined effects of flux expulsion from the rolls and fiel
line stretching near the stagnation points.

The symmetry of the secondary steady state implies
the modes with wave numbersk5(kx,0,0) and k
5(0,ky,0), kx ,kyPN, have to be equal to zero. After th
Hopf bifurcation~leading to the time-periodic state! all these
modes are excited. Those withkx51 or ky51, in particular,
represent large-scale shear components of the flow and o
magnetic field.

For the chaotic regime all symmetries seem to be brok
To give an impression of the irregular structure of the m
netic field in this regime, contour lines of the absolute va
of the magnetic field in two cross sections through the cu
calculated forR517, are shown in Fig. 8.

To get a measure of the degree of spatial irregularity

FIG. 8. Contour lines of the absolute value of the magnetic fi
in the planesz5p/2 ~left! andz5p ~right! for R517.
-
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the chaotic state, also energy spectra have been calcul
Compared to the periodic state depicted in Fig. 7, where o
one mode with a nonvanishingkz is excited, thekz spectra of
the chaotic solutions extend to smaller scales. Here thekz
spectra are calculated by averaging over allkx andky . In the
uku spectrum, however, we could not observe yet~for the
Reynolds numbers considered! significant differences be
tween the chaotic and other time-dependent solut
branches.

V. SUMMARY

We have studied the incompressible MHD equations w
a forcing of the Roberts type. Increasing the Reynolds nu
ber from small values, the primary solution, the nonmagne
Roberts flow, becomes unstable in a pitchfork bifurcatio
yielding a new steady state with a nonvanishing magn
field, that is to say, a dynamo effect. In contrast to analog
investigations of the MHD equations with ABC forcing
where the primary dynamo bifurcation is of the Hopf typ
and all magnetic states are time dependent@7–9#, it seems
remarkable that a stationary dynamo has been found h
We have traced the magnetic solution branch towards hig
Reynolds number and have found a transition to chaotic
lutions via a series of secondary bifurcations.

A notable detail in the bifurcation sequence is a sudd
drop of the magnetic energy accompanying the transit
from periodic to quasiperiodic motion. It is likely to b
caused by a primarily hydrodynamic instability. While in th
purely hydrodynamic case a kinetic-energy drop is observ
there is a magnetic-energy drop~and no kinetic-energy drop!
in the MHD case.

Special attention has been paid to the analysis of the
symmetry-breaking bifurcation and its influence on the str
ture of the generated magnetic field. We have determined
magnetic modes becoming unstable in the primary pitchf
bifurcation and have classified the resulting subgroup t
determines the symmetry of the new steady state with a n
vanishing magnetic field; it turned out that the original tran
lational symmetry is broken in a nontrivial manner.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs
meinschaft under its main topic ‘‘Ergodentheorie, Analys
und Effiziente Simulation Dynamischer Systeme.’’

d

ys.

tro-

t. A
@1# E. R. Priest,Solar Magnetohydrodynamics~Reidel, Dordrecht,
1982!.

@2# H. K. Moffatt, Magnetic Field Generation in Electrically Con
ducting Fluids~Cambridge University Press, Cambridge, E
gland, 1978!.

@3# V. I. Arnold, C. R. Acad. Sci. Paris261, 17 ~1965!.
@4# V. I. Arnold and E. I. Korkina, Vestn. Mosk. Univ. Mat

Mekh. 3, 43 ~1983!.
@5# D. Galloway and U. Frisch, Geophys. Astrophys. Fluid Dy

36, 53 ~1986!.

.

@6# G. O. Roberts, Philos. Trans. R. Soc. London, Ser. A271, 411
~1972!.

@7# B. Galanti, P. L. Sulem, and A. Pouquet, Geophys. Astroph
Fluid Dyn. 66, 183 ~1992!.

@8# N. Seehafer, F. Feudel, and O. Schmidtmann, Astron. As
phys.314, 693 ~1996!.

@9# F. Feudel, N. Seehafer, B. Galanti, and S. Ru¨diger, Phys. Rev.
E 54, 2589~1996!.

@10# F. Feudel, N. Seehafer, and O. Schmidtmann, Phys. Let
202, 73 ~1995!.



e-

er
X,
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